43,730 research outputs found

    Groups generated by two elliptic elements in PU(2,1)

    Get PDF
    Let ff and gg be two elliptic elements in PU(2,1)\mathbf{PU}(2,1) of order mm and nn respectively, where m≥n>2m\geq n>2. We prove that if the distance δ(f,g)\delta(f,g) between the complex lines or points fixed by ff and gg is large than a certain number, then the group is discrete nonelementary and isomorphic to the free product Zm∗Zn\mathbf{Z}_{m}*\mathbf{Z}_{n}.Comment: 9 page

    Wishart Mechanism for Differentially Private Principal Components Analysis

    Full text link
    We propose a new input perturbation mechanism for publishing a covariance matrix to achieve (ϵ,0)(\epsilon,0)-differential privacy. Our mechanism uses a Wishart distribution to generate matrix noise. In particular, We apply this mechanism to principal component analysis. Our mechanism is able to keep the positive semi-definiteness of the published covariance matrix. Thus, our approach gives rise to a general publishing framework for input perturbation of a symmetric positive semidefinite matrix. Moreover, compared with the classic Laplace mechanism, our method has better utility guarantee. To the best of our knowledge, Wishart mechanism is the best input perturbation approach for (ϵ,0)(\epsilon,0)-differentially private PCA. We also compare our work with previous exponential mechanism algorithms in the literature and provide near optimal bound while having more flexibility and less computational intractability.Comment: A full version with technical proofs. Accepted to AAAI-1

    Topological Imbert-Fedorov shift in Weyl semimetals

    Full text link
    The Goos-H\"anchen (GH) shift and the Imbert-Fedorov (IF) shift are optical phenomena which describe the longitudinal and transverse lateral shifts at the reflection interface, respectively. Here, we report the GH and IF shifts in Weyl semimetals (WSMs) - a promising material harboring low energy Weyl fermions, a massless fermionic cousin of photons. Our results show that GH shift in WSMs is valley-independent which is analogous to that discovered in a 2D relativistic material - graphene. However, the IF shift has never been explored in non-optical systems, and here we show that it is valley-dependent. Furthermore, we find that the IF shift actually originates from the topological effect of the system. Experimentally, the topological IF shift can be utilized to characterize the Weyl semimetals, design valleytronic devices of high efficiency, and measure the Berry curvature
    • …
    corecore